

NOME:

CURSO

QUÍMICA

PROF.

DALTON

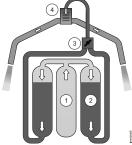
DATA: 19/04

LISTA

Estudo dos Gases

1. (Ufpr 2013) Num depósito há três cilindros idênticos de gás, numa mesma temperatura, e cada cilindro possui um rótulo com as seguintes informações:

Cilindro 1	7 g de N ₂	16 g de O ₂	6 g de He		
Cilindro 2	14 g N ₂	8 g de O ₂	13 g de CO ₂		
Cilindro 3	8 g de CH ₄	13 g de O ₂	4 g H ₂		


Dados MM(g/mol): C = 12,01; H = 1,008; O = 15,999; N = 14,007; He = 4,003.

Com base nesse quadro, considere as seguintes afirmativas:

- 1. O cilindro 1 apresenta a maior pressão parcial de O₂.
- 2. O cilindro 2 apresenta a menor pressão parcial de N₂.
- 3. O cilindro 3 apresenta a menor pressão parcial de O₂.
- 4. O cilindro 3 apresenta a maior pressão total.

Assinale a alternativa correta.

- a) Somente as afirmativas 1 e 4 são verdadeiras.
- b) Somente as afirmativas 2 e 3 são verdadeiras.
- c) Somente as afirmativas 1, 2 e 4 são verdadeiras.
- d) Somente as afirmativas 2, 3 e 4 são verdadeiras.
- e) As afirmativas 1, 2, 3 e 4 são verdadeiras.
- 2. (Unicamp 2013) Na década de 1960, desenvolveu-se um foguete individual denominado "Bell Rocket Belt", que fez grande sucesso na abertura das Olimpíadas de 1984.

Simplificadamente, esse foguete funciona à base da decomposição de peróxido de hidrogênio contido no compartimento 2, onde ele é estável. Abrindo-se a válvula 3, o peróxido de hidrogênio passa para o compartimento 4, onde há um catalisador. Nesse compartimento, o peróxido se decompõe muito rapidamente, de acordo com a equação abaixo:

$$H_2O_2(\ell) \rightarrow H_2O(g) + \frac{1}{2}O_2(g); \qquad \Delta H = -54 \text{ kJ mol}^{-1}$$

Com base nessas informações, responda:

- a) No funcionamento do dispositivo há liberação ou absorção de energia? Justifique.
- b) Considerando a decomposição total de 68 quilogramas de peróxido de hidrogênio contidos no dispositivo, quantos metros cúbicos de gases são produzidos? Leve em conta que nas condições de uso do dispositivo o volume molar gasoso é de 0,075 m³ mol⁻¹.
- 3. (Uerj 2013) Dois balões idênticos são confeccionados com o mesmo material e apresentam volumes iguais. As massas de seus respectivos conteúdos, gás hélio e gás metano, também são iguais. Quando os balões são soltos,

eles alcançam, com temperaturas internas idênticas, a mesma altura na atmosfera.

Admitindo-se comportamento ideal para os dois gases, a razão entre a pressão no interior do balão contendo hélio e a do balão contendo metano é igual a:

- a) 1
- b) 2
- c) 4
- d) 8

4. (Ufpr 2013) Nos últimos dois anos, a imprensa divulgou notícias sobre o risco de explosão oferecido por condomínios de luxo e um Shopping Center de São Paulo. Os estabelecimentos foram construídos sobre antigos lixões. Nesses casos, o órgão responsável, ligado à Secretaria de Meio Ambiente, autuou os estabelecimentos, exigindo providências quanto à instalação de sistema de extração de gases.

Em relação a esse risco, considere as seguintes afirmativas:

- O risco de explosão deve-se principalmente à presença de metano, produzido por micro-organismos em condições anaeróbicas, na decomposição do material orgânico presente no lixão.
- 2. Os gases oferecem risco de explosão porque reagem vigorosamente com agentes oxidantes fortes.
- 3. O gás metano é facilmente detectado pelo odor característico.
- Os gases que oferecem risco de explosão apresentam alta densidade, formando lençóis nos compartimentos de subsolo, como garagens subterrâneas.

Assinale a alternativa correta.

- a) Somente as afirmativas 2 e 3 são verdadeiras.
- b) Somente as afirmativas 1 e 2 são verdadeiras.
- c) Somente as afirmativas 2, 3 e 4 são verdadeiras.
- d) Somente as afirmativas 1 e 4 são verdadeiras.

e) As afirmativas 1, 2, 3 e 4 são verdadeiras.

5. (Uespi 2012) Uma criança com severa infecção nos brônquios apresenta problemas respiratórios, e o médico administra "heliox", uma mistura de oxigênio e hélio com 90,0% em massa de O₂. Se a pressão atmosférica é igual a 1 atm, calcule a pressão parcial de oxigênio que foi administrada à criança.

Dados: Massas molares em g . mol^{-1} : He = 4; O = 16.

- a) 0,53 atm
- b) 0,60 atm
- c) 0,69 atm
- d) 0,75 atm
- e) 0,82 atm
- 6. (Unesp 2012) Os desodorantes do tipo aerossol contêm em sua formulação solventes e propelentes inflamáveis. Por essa razão, as embalagens utilizadas para a comercialização do produto fornecem no rótulo algumas instruções, tais como:
- Não expor a embalagem ao sol.
- Não usar próximo a chamas.
- Não descartar em incinerador.

(www.gettyimagens.pt)

Uma lata desse tipo de desodorante foi lançada em um incinerador a 25 °C e 1 atm. Quando a temperatura do sistema atingiu 621 °C, a lata explodiu. Considere que não houve deformação durante o aquecimento. No momento da explosão a pressão no interior da lata era

- a) 1,0 atm.
- b) 2,5 atm.
- c) 3,0 atm.
- d) 24,8 atm.
- e) 30,0 atm.
- 7. (Uern 2012-MOD) Em dois recipientes, ligados por uma válvula, foram colocados dois gases à temperatura de 25°C. Em um dos recipientes foram colocados 3 L de gás oxigênio (O₂) a uma pressao de 1 atm, no outro recipiente 1 L de gás Hélio (He) e 2 atm de pressão. Abrindo a válvula, os dois gases se misturam. Sabendo-se que a temperatura permanece a mesma, a pressão parcial do oxigênio é de, aproximadamente,
- a) 0,75 atm.
- b) 0,597 atm.
- c) 0,12 atm.
- d) 0,081 atm.
- 8. (Ufpb 2012) Recentemente, foram divulgados pela imprensa local (Jornal Correio da Paraíba de 03/07/2011) resultados de uma pesquisa sobre a poluição atmosférica causada pela emissão de CO_2 por veículos automotores que circulam em João Pessoa. Segundo esses resultados, para neutralizar os efeitos dessa poluição, seria necessário que a área de Mata Atlântica fosse cinco vezes maior que a existente na Paraíba. Ainda segundo a pesquisa, num trajeto de ida e volta na Avenida Epitácio Pessoa, totalizando 20 km, um automóvel chega a liberar 3 kg de CO_2 . Nesse contexto, considere que essa massa equivale a 68 mol de CO_2 e que essa quantidade é transformada pela fotossíntese em igual quantidade de matéria de O_2 .

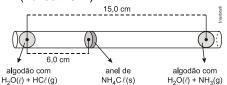
Com base nessas considerações, é correto afirmar que, nas CNTP, o volume de O_2 produzido nessa transformação é

- a) 1523,2 L
- b) 1523,2 mL
- c) 2992,0 L
- d) 2992,0 mL
- e) 67,2 L
- 9. (Úfsj 2012) O funcionamento dos *airbags* dos automóveis baseia-se na utilização de uma reação química que produz uma grande quantidade de gás. Uma reação que tem sido considerada ultimamente é:

$$5C_{\left(s\right)}+2Sr\left(NO_{3}\right)_{2\left(s\right)}\rightarrow2SrO_{\left(s\right)}+2N_{2\left(g\right)}+5CO_{2\left(g\right)}$$

Usando essa reação, considerando R = 0,08 L \cdot atm/K \cdot mol e desprezando o sólido formado, o número de mols de carbono necessário para encher um airbag de 40 L a 1,2 atm e 27 °C será

- a) 4,8
- b) 1,4
- c) 2,0
- d) 5,0

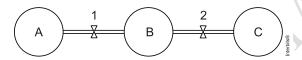

- 10. (Uem 2012) Considerando dois recipientes idênticos e hermeticamente fechados A e B, contendo as mesmas quantidades molares dos gases rarefeitos CO_2 e H_2 , respectivamente, que possuem a mesma energia cinética média por molécula, assinale o que for correto.
- 01) A soma da energia cinética média de todas as partículas constitui a energia interna dos gases contidos nos recipientes A e B.
- 02) Quanto maior a energia cinética média das partículas, maior será a temperatura do gás.
- 04) Se os gases contidos em A e B estiverem sob o mesmo nível de agitação térmica, a energia interna do gás em A será maior devido à sua massa molar maior.
- 08) Como o CO₂ possui uma massa molar maior que o H₂, a pressão que ele exerce sobre as paredes do recipiente A é maior que a pressão que o H₂ exerce sobre as paredes do recipiente B.
- 16) A pressão manométrica exercida pelos gases contidos em A e B sobre as paredes dos respectivos recipientes independe da velocidade média ou da taxa de colisão das moléculas do gás com as paredes do recipiente.
- 11. (Ufpe 2012) Arsenieto de gálio (GaAs) cristalino é um material importante na preparação de LEDs (do inglês *lightemitting diodes*). Filmes monocristalinos de GaAs podem ser utilizados na construção de telas LEDs e são comumente obtidos de precursores organometálicos voláteis, como, por exemplo, na reação não balanceada:

$$\mathsf{Ga}\big(\mathsf{CH}_3\big)_{\!3(g)} + \mathsf{AsH}_{\!3(g)} \to \mathsf{GaAs}_{\!(s)} + \mathsf{CH}_{\!4(g)}.$$

Considerando que os gases são ideais e que a reação ocorre num recipiente fechado, é correto afirmar que:

-) são produzidos 3 mols de metano para cada mol de arsina consumida.
- () a pressão final é metade da pressão inicial.
- as pressões parciais da arsina e do trimetilgálio diminuem igualmente durante a reação.
- a pressão parcial de metano é constante durante a reacão.
- () para que ocorra o consumo total dos reagentes, eles têm que ter as mesmas pressões parciais iniciais.

12. (Fuvest 2012)

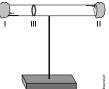

Uma estudante de Química realizou um experimento para investigar as velocidades de difusão dos gases $HC\ell$ e NH $_3$. Para tanto, colocou, simultaneamente, dois chumaços de algodão nas extremidades de um tubo de vidro, como mostrado na figura acima. Um dos chumaços estava embebido de solução aquosa de $HC\ell$ (g), e o outro, de solução aquosa de NH $_3$ (g). Cada um desses chumaços liberou o respectivo gás. No ponto de encontro dos gases, dentro do tubo, formou-se, após 10 s, um anel de sólido branco (NH $_4$ C ℓ), distante 6,0 cm do chumaço que liberava $HC\ell$ (g).

 a) Qual dos dois gases, desse experimento, tem maior velocidade de difusão? Explique.

- b) Quando o experimento foi repetido a uma temperatura mais alta, o anel de $NH_4C\ell$ (s) se formou na mesma posição. O tempo necessário para a formação do anel, a essa nova temperatura, foi igual a, maior ou menor do que 10 s? Justifique.
- c) Com os dados do experimento descrito, e sabendo-se a massa molar de um dos dois gases, pode-se determinar a massa molar do outro. Para isso, utiliza-se a expressão $\frac{\text{velocidade de difusão do NH}_3(g)}{\text{velocidade de difusão do HCℓ}} = \sqrt{\frac{\text{massa molar do HCℓ}}{\text{massa molar do NH}_3}}$ Considere que se queira determinar a massa molar do HC\$\ell\$. Caso o algodão embebido de solução aquosa de NH\$_3\$ (g) seja colocado no tubo um pouco antes do algodão que libera HC\$\ell\$ (g) (e não simultaneamente), como isso afetará o valor obtido para a massa molar do HC\$\ell\$? Explique.}
- 13. (Mackenzie 2012) Três recipientes indeformáveis A, B e C, todos com volumes iguais, contêm, respectivamente, três diferentes gases de comportamento ideal, conforme a descrição contida na tabela abaixo.

Recipiente	Gás armazenado	Temperatura	Pressão	
Α	hélio (He)	400 K	3 atm	
В	nitrogênio (N_2)	600 K	4,5 atm	
С	oxigênio (O ₂)	200 K	1 atm	

Os balões são interligados entre si por conexões de volumes desprezíveis, que se encontram fechadas pelas válvulas 1 e 2. O sistema completo encontra-se ilustrado na figura a seguir.



Ao serem abertas as válvulas 1 e 2, a mistura gasosa formada teve sua temperatura estabilizada em 300 K.

Desse modo, a pressão interna final do sistema é igual a

- a) 1,5 atm.
- b) 2,0 atm.
- c) 2,5 atm.
- d) 3,0 atm.
- e) 3,5 atm.
- 14. (Uem 2012) Balões vendidos em parques e festas sobem porque são preenchidos com hélio ou hidrogênio. Após algumas horas, esses balões tendem a murchar, pois o gás escapa pela borracha do balão. A esse respeito assinale a(s) alternativa(s) correta(s).
- 01) Hidrogênio e hélio escapam do balão através de um processo chamado difusão de gases.
- 02) Se um balão fosse preenchido com hidrogênio e hélio, esta mistura de gases seria homogênea.
- 04) A velocidade de efusão de gases depende somente do meio pelo qual esses gases efundem.
- 08) A densidade absoluta de um gás pode ser expressa como sendo a razão entre a sua massa molar em gramas e 22,4 litros, nas CNTP.
- 16) Gás sulfídrico, um gás tóxico, por ser mais denso que o ar, acumula-se junto ao solo quando escapa de seu recipiente.

15. (Upe 2012) Dois chumaços de algodão, I e II, embebidos com soluções de ácido clorídrico, $HC\ell$, e amônia, NH_3 , respectivamente, são colocados nas extremidades de um tubo de vidro mantido fixo na horizontal por um suporte, conforme representação abaixo. Após um certo tempo, um anel branco, III, forma-se próximo ao chumaço de algodão I.

Baseando-se nessas informações e no esquema experimental, analise as seguintes afirmações:

- I. O anel branco forma-se mais próximo do $HC\ell$, porque este é um ácido forte, e NH_3 é uma base fraca.
- II. O anel branco formado é o $NH_4C\ell$ sólido, resultado da reação química entre $HC\ell$ e NH_3 gasosos.
- III. O $HC\ell$ é um gás mais leve que NH_3 , logo se movimenta mais lentamente, por isso o anel branco está mais próximo do ácido clorídrico.

Está correto o que se afirma em

Dados: massas molares, H = 1g/mol; $C\ell$ = 35,5 g/mol; N = 14 g/mol.

- a) II.
- b) III.
- c) I e II.
- d) I e III.
- e) II e III.

GABARITO

	1	2	3	4	5	6	7	8	9	10
0	Α	-	С	В	Α	С	Α	Α	В	03
1	VFVFV	-	В	026	Α					

Resposta da questão 2:

a) No funcionamento do dispositivo há liberação de energia (reação exotérmica), pois o sinal do ΔH é negativo, ou seja, a variação de entalpia é negativa.

b) Teremos:

$$\begin{aligned} \text{1H}_2\text{O}_2\left(\ell\right) &\to \text{1H}_2\text{O} \; \left(g\right) \; + \; \frac{1}{2} \; \text{O}_2\left(g\right) \\ &\quad \text{34 g-------} \; \text{1,5 mol de gases} \\ &\quad \text{34 g -------} \; \text{1,5 \times 0,075 m}^3 \\ &\quad \text{68 \times 10}^3 \, \text{g ----------} \; \text{V}_{\text{gases}} \\ &\quad \text{V}_{\text{gases}} = 225 \; \text{m}^3 \end{aligned}$$

Resposta da questão 12:

- a) De acordo com a figura, o anel de $NH_4C\ell$ se forma a 6,0 cm da extremidade do algodão com $HC\ell$ e a 9,0 cm da extremidade do algodão com NH_3 . Quanto maior a distância, maior a velocidade do gás no tubo, concluí-se que o NH_3 é o gás que apresenta maior velocidade de difusão.
- b) Quanto maior a temperatura, maior a velocidade de difusão das moléculas e a velocidade da reação.
 Consequentemente o anel de será formado num tempo menor do que 10 s.
- c) Caso o algodão embebido de solução aquosa de NH_3 (g) seja colocado no tubo um pouco **antes** do algodão que libera $HC\ell$ (g) (e não simultaneamente) o anel de $NH_4C\ell$ será formado a uma distância maior da extremidade do algodão embebido com NH_3 dando a impressão de que a velocidade de difusão do $HC\ell$ é menor do que a verdadeira. De acordo com a expressão matemática fornecida, quanto menor a velocidade de difusão, maior a massa molar. Consequentemente, a massa molar do $HC\ell$ parecerá maior do que a verdadeira.